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SUMMARY 

Hysteresis loops are obtained in the Ising spin-glass phase in d = 3, using frustration-

conserving hard-spin mean-field theory. The system is driven by a time-dependent 

random magnetic field QH  that is conjugate to the spin-glass order Q , yielding a 

field-driven first-order phase transition through the spin-glass phase. The hysteresis 

loop area A  of the QQ H−  curve scales with respect to the sweep rate h  of magnetic 

field as 
0

b
A A h− ∼ . In the spin-glass and random-bond ferromagnetic phases, the 

sweep-rate scaling exponent b changes with temperature T , but appears not to 

change with antiferromagnetic bond concentration p . By contrast, in the pure ferro-

magnetic phase, b  does not depend on T  and has a sharply different value than in 

the two other phases. 
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1. INTRODUCTION 

1.1 Spin Glasses  

Spin glasses are magnetic systems in which the interactions between the magnetic 

moments are “in conflict” with each other, due to some frozen-in structural disorder. 

Thus no conventional long-range order (of ferromagnetic or antiferromagnetic type) 

can be established. Nevertheless these systems exhibit a “freezing transition” to a 

state with a new kind of “order” in which the spins are aligned in random directions 

[1]. In other words, spin glasses are magnetic systems which are ordered in time, but 

disordered in space. 

The “classical” spin glass materials are noble metals (Au, Ag, Cu, Pt) weakly diluted 

with transition metal ions, such as Fe or Mn. However, insulators such as 1x xEu Sr S− , 

with x roughly between .1 and .5, also display spin glass behavior. In the alloy pic-

ture, the scattering of the conduction electrons at the spins leads to an indirect ex-

change interaction which oscillates strongly with distance R.  

0
0 3

cos(2 )
( )

( )

F

F

k R
J R J

k R

ϕ+
= .  (1.1) 

Here, 0J  and 0ϕ are constants and Fk  is the Fermi wave number of the host metal. 

Since the distances between the spins are random, some of the interaction of the con-

sidered spin with other ones will be positive, favoring parallel alignment, some nega-

tive, favoring antiparallel alignment; thus no spin alignment can be found that is sat-

isfactory to all exchange bonds. This effect is called “frustration”.  

In addition to the exchange, anisotropies may play a crucial role. But there is no uni-

versal explanation for its effects. For example anisotropies of uniaxial or unidirec-

tional character will not lead to any macroscopic global anisotropy of the system in 
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the disordered state, unless one dials with uniaxial spin glasses such as 1 2 3( )x xTi V O− . 

In this case, static susceptibilities have to be distinguished according to whether the 

field is applied parallel or perpendicular to the easy axis. Other examples of anisot-

ropic spin glasses are ZnMn, where the easy axis is the c axis and the system is Ising 

type, CdMn, an example of an XY spin glass and MgMn, which shows the character-

istics of a Heisenberg spin glass. 

As proven by extensive experimental work over the years, in spin glasses there is a 

rather sharp peak in the low-frequency dependent susceptibility which then becomes 

progressively rounded with increasing frequency and only rather weak frequency de-

pendence of the peak temperature. The spectrum of relaxation times broadens far 

above fT  and extends to macroscopic time scales at and below fT . At the same time, 

equilibrium spin glass correlations develop above freezing and lead to a dramatic in-

crease of the static nonlinear susceptibility, and the magnetization can be brought 

into a scaled equation of state very similar to the behavior at ordinary magnetic phase 

transitions. Thus the spin glass combines some features characteristic of equilibrium 

phase transitions with some features characteristic of nonequilibrium systems such as 

ordinary glasses. 

Moreover, the presence of a magnetic field usually has some drastic effects on spin 

glasses. While the random interactions want to freeze in the spins in random direc-

tions, a magnetic field wants to align them parallel to the field, thus there is competi-

tion between spin glass order and the Zeeman energy. Therefore, strong enough 

magnetic fields can destroy the spin glass state entirely. Another important effect is 

the irreversible behavior in the temperature region of the freezing transition and 

lower temperatures. After switching off the field, one finds a remanent magnetization 

that decays so slowly with time that a nonzero remanence is observed over macro-

scopic time scales. This remanent magnetization also depends on the “magnetic his-

tory” of the sample. If one cycles the field from positive to negative values and then 

back, instead of switching it off, one observes hysteresis phenomena as in ferromag-

nets. However, there exists a wide variation in the shape of the hysteresis loops, 

which also depend on the magnetic history of the sample.  
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The modern theory of spin glasses began with the work of Edwards and Anderson 

(EA) [3], who proposed that the essential physics of spin glasses lay not in the details 

of their microscopic interactions but rather in the competition between quenched fer-

romagnetic and antiferromagnetic interactions. It should therefore be sufficient to 

study the Hamiltonian  

,

xy x y x

x y x

H J hσ σ σ
< >

= − −∑ ∑J ,  (1.2) 

where x  is a site in a d-dimensional cubic lattice, 1xσ = ±  is the Ising spin at site x , 

h  is an external magnetic field, and the first sum is over nearest neighbor sites only. 

To keep things simple, we take h =0 and the spin couplings 
xyJ  to be independent 

Gaussian random variables whose common distribution has mean zero and variance 

one. With these simplifications, the EA Hamiltonian in Eq. (1.2) has global spin in-

version symmetry. We denote by J a particular realization of the couplings, corre-

sponding physically to a specific spin glass sample. It can be seen that the Hamilto-

nian (1.2) exhibits “frustration”; no spin configuration can simultaneously satisfy all 

couplings.  

Anderson [4] suggested a different formulation, namely that frustration manifests 

itself as free energy scaling as the square root of the surface area of a typical sample. 

Either way, the spin glass is characterized by both quenched disorder and frustration. 

Their joint presence indicates the possibility that spin glasses might possess multiple 

pure thermodynamic states unrelated by any simple symmetry transformation.  

Within months of appearance of the EA model, an infinite-ranged version was pro-

posed by Sherrington and Kirkpatrick (SK) [5]. For a system of N Ising spins and in 

zero external field, their Hamiltonian is  

,

1

1
N ij i j

i j N

H J
N

σ σ
≤ ≤ ≤

= − ∑J ,  (1.3) 

where the independent, identically distributed couplings ijJ  are again chosen from a 

Gaussian distribution with zero mean and variance one; the 1 N  rescaling ensures 
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a sensible thermodynamic limit for free energy per spin and other thermodynamic 

quantities.  

SK showed that their model had an equilibrium phase transition at 1CT = . While the 

static susceptibility had a cusp there, so did the specific heat. This was not necessar-

ily surprising given that infinite-ranged models are not expected to correctly describe 

the behavior of low-dimensional systems at the critical point. More troubling was 

SK's observation that the low-temperature phase had an instability; in particular, the 

entropy became negative at very low temperature.  

A mean field theory, employing the Onsager reaction field term, was proposed two 

years later by Thouless, Anderson, and Palmer [6]. Their approach indicated that 

there might be many low-temperature solutions, possibly corresponding to different 

spin glass “phases”. Other important early papers include the work of de Almeida 

and Thouless [7], who considered the stability of the SK solution in the h-T plane, 

and the dynamical work of Sompolinsky and Zippelius [8-10].  

What is believed today to be the correct solution for the low-temperature phase of the 

SK model is the Parisi solution [11]. The picture that finally arose was that of a sys-

tem with a new kind of symmetry breaking, known today as “replica symmetry 

breaking” after the mathematical procedures used to derive it. The essential idea is 

that the low-temperature phase consists not of a single spin-reversed pair of states, 

but rather of “infinitely many pure thermodynamic states" [12], not related by any 

simple symmetry transformations. 

Concepts that arose in the study of spin glasses have led to applications in areas as 

diverse as computer science [13-16], neural networks [17, 18], prebiotic evolution 

[19-21], protein conformational dynamics [22], protein folding [23], and a variety of 

others.  

1.2 Hysteresis 

Hysteresis is a property of systems (usually physical systems) that do not instantly 

follow the forces applied to them, but react slowly, or do not return completely to 
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their original state: that is, systems whose states depend on their immediate history. 

The term derives from an ancient Greek meaning 'deficiency'.  

Hysteresis is well known in ferromagnetic materials. When an external magnetic 

field is applied to a ferromagnet, the ferromagnet absorbs some of the external field. 

Even when the external field is removed, the magnet will retain some field: it has 

become magnetized. 

The relationship between magnetic field strength (H) and magnetic flux density (B) 

is not linear in such materials. If the relationship between the two is plotted for 

increasing levels of field strength, it will follow a curve up to a point where further 

increases in magnetic field strength will result in no further change in flux density. 

This condition is called magnetic saturation. If the magnetic field is now reduced 

linearly, the plotted relationship will follow a different curve back towards zero field 

strength at which point it will be offset from the original curve by an amount called 

the remanent flux density or remanence. 

If this relationship is plotted for all strengths of applied magnetic field the result is a 

sort of S- shaped loop. The “thickness” of the middle bit of the S describes the 

amount of hysteresis, related to the coercivity of the material. 

Its practical effects might be, for example, to cause a relay to be slow to release due 

to the remaining magnetic field continuing to attract the armature when the applied 

electric current to the operating coil is removed. 

1.3 Ising Spin Glass (Frustrated Ising Model) 

The model is defined by the Hamiltonian 

ij i j

ij

H J s sβ
< >

− =∑   (1.4) 

where 1
i

s = ±  at each site i  of a cubic lattice and ij< >  denotes summation over 

nearest-neighbor pairs. The interactions (bond strengths) ijJ  are equal to J− with 
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quenched probability p  and J+  with probability 1 p− , respectively corresponding 

to antiferromagnetic and ferromagnetic coupling. 

Antiferromagnetic coupling:  

Ferromagnetic coupling:  

1.4 Mean Field Theory 

A many-body system with interactions is generally difficult to solve exactly, except 

for a few simple cases. The great difficulty arises when summing over all states be-

cause of the many possible combinations of the interaction terms in the Hamiltonian. 

The goal of mean field theory (MFT, also known as self-consistent field theory) is to 

resolve these combinatorial problems. 

The main idea of MFT is to replace all interactions to any one body with an average 

or effective interaction. This reduces any multi-body problem into an effective one-

body problem. In case of the Ising Model, each spin sees the average value of its 

neighbors. All correlated fluctuations are ignored [24].  

  

FIG. 1.1: Each spin sees the average value of its neighbors. 

The self-consistent equation for the local magnetizations, i im s=< > , is given by 

tanh ( )i ij j i

j

m J m H t
 

= + 
 
∑ ,  (1.5) 

} Frustration: 

? 
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where im  can take any value between -1 and +1.  

However useful the MFT is, it gives wrong results for frustrated systems. MFT uses 

the neighboring local magnetizations, which can take continuous values, for calculat-

ing the average at one point, thus causing the magnitudes of the conflicting interac-

tions to be different. This artificially eliminates frustration. 

1.5 Hard Spin Mean Field Theory 

Hard-spin mean-field theory (HSMFT) is a method nearly as simply implemented as 

the conventional mean-field theory but it conserves frustration by incorporating the 

effect of the full magnitude of each spin. Neighboring spins themselves are used in-

stead of their averages as in the MFT [25]. The self-consistent equation for local 

magnetizations im  is 

{ }

( , ) tanh ( )
j

i j j ij j i

s jj

m P m s J s H t
   

= +  
  

∑ ∑∏ , (1.6) 

where the sum { }ij
s  is over all interacting neighbor configurations and the sum and 

the product over j  are over all sites that are coupled to site i  by interaction ijJ  . The 

averages are required for the single-site probability distribution ( , )j jP m s , which is 

(1 ) 2j jm s+ , thus we still have a mean field approximation.  

The hard-spin mean-field theory has been used in many models and calculations be-

fore [25-39]. The approach was first applied to the anti-ferromagnetic, nearest 

neighbor Ising model on the triangle lattice. In this case it has been known that there 

is no phase transition when the external magnetic field equals zero except when the 

temperature is also equal to zero. Conventional mean field theory in this case as well 

as other closed form approximations give results that are not only quantitatively in-

correct but also qualitatively incorrect in that they predict a phase transition for the 

case of zero magnetic field for non-zero values of the temperature. This is then simi-

lar to what is predicted for an anti-ferromagnetic Ising model on a square lattice, but 

on the square lattice there is no frustration whereas the anti-ferromagnetic Ising 
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model on the triangle lattice is fully frustrated. As pointed out by Berker and Netz 

[25, 26], it is these frustration effects that the HSMFT correctly approximates but 

conventional mean field theory misses. 

Besides the two-dimensional triangle lattice system HSMFT has been quantitatively 

successful in yielding the orderings and phase boundaries of the partially frustrated, 

ferromagnetically [26] or antiferromagnetically [25] stacked three-dimensional ver-

sion of the model. Thus, unlike usual mean-field theory and other previous self-

consistent theories, HSMFT is sensitive to qualitative differences in ordering behav-

ior between different spatial dimensions, in fact giving exact results [27] in d=1. Im-

mediate further applications of the method to partially and fully frustrated square and 

cubic lattices has yielded phase diagrams that discerned up to 24 coexisting phases 

and 16 magnetization sublattices, and the novel phenomena of inclusive and exclu-

sive coexistence lines [28]. Results have also been obtained on the competition be-

tween frustration and high-spin kinematics [29]. The method is also formulated for 

arbitrary types of local degrees of freedom [25]  

All of these systems have nearest neighbor, pair interactions. Often equally trouble-

some for conventional mean field theory are systems with multi-site interactions, 

where by multi-site we mean three or more sites. The HSMFT can be used on sys-

tems with multi-site interactions as well as pair interactions [30]. J. L. Monroe stud-

ied such systems, specifically looking at the triangle lattice Ising model system with 

anti-ferromagnetic pair interactions and in addition three site interactions on the ele-

mentary triangles of the lattice. His results show that as in the case for which the 

HSMFT was initially used, the anti-ferromagnetic Ising model on the triangle lattice, 

even with the addition of a three site multi-site interaction for which standard mean-

field theory gives poor results the HSMFT gives topologically correct phase dia-

grams. In addition the quantitative values appear good when compared to Monte 

Carlo results for these systems. 

Moreover, a free energy calculation; necessary to enable a choice when multiple so-

lutions are found in the closed-form solution [25, 27, 31] of the theory; was pre-

sented by Kabakçıoğlu, Berker and Yalabık [32]. Consequently it is now possible 

within the context of HSMFT to distinguish between metastable solutions and the 

true thermodynamic equilibrium. Later on, A. Pelizzola and M. Pretti calculated the 
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zero field, zero temperature entropy and internal energy for the AF Ising model on a 

triangular lattice, also obtaining several informations about the model’s behavior 

near zero temperature in their approximation [33]. 

Finally, a generic derivation of the HSMFT equations is presented, allowing for sys-

tematic improvements of their accuracy, which was necessary especially for the cal-

culation of long-range correlation functions [34]. In his paper, Kabakçıoğlu also ar-

gued that the lowest level of approximation was rather inaccurate in predicting the 

correlation functions; nevertheless, the next level of approximation within the same 

framework recovered the exact result in spatial dimension d=1. At this level, HSMFT 

also proved to differentiate between a two-dimensional triangular and a 3D cubic lat-

tice which was otherwise a typical failure of the mean-field theories. 
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2. FIELD DRIVEN HYSTERESIS SCALING IN THE D=3 ISING SPIN 

GLASS 

Frustration and non-equilibrium effects induce complicated ordering behaviors that 

challenge the methods of statistical physics. Perhaps the most ubiquitous non-

equilibrium effect, hysteresis is the current topic of intense fundamental and applied 

studies [40-44]. In the present study, hard-spin mean-field theory, developed specifi-

cally to respect frustration [26, 25], is used to study the non-equilibrium behavior of 

the field-driven first-order phase transition that is implicit, but to-date unstudied, in 

spin-glass ordering. For the Ising spin-glass on a cubic lattice, the phase diagram is 

obtained and the temperature- and concentration-dependent ordering of the spin-glass 

phase is microscopically determined. The random magnetic field that is conjugate to 

this microscopic order is then identified and used to induce a first-order transition 

and hysteresis loops. We find qualitatively and quantitatively contrasting scaling be-

haviors in spin-glass, quenched random-bond ferromagnetic, and pure ferromagnetic 

phases of the system. 

The model is defined by the Hamiltonian 

( )ij i j i i

ij i

H J s s H t sβ
< >

− = +∑ ∑   (2.1) 

where 1is = ±  at each site i  of a cubic lattice and ij< >  denotes summation over 

nearest-neighbor pairs. The bond strengths ijJ  are equal to J− with quenched prob-

ability p  and J+  with probability 1 p− , respectively corresponding to antiferro-

magnetic and ferromagnetic coupling. ( )iH t  is a linearly swept quenched random 

magnetic field, itself determined, as explained below, by the spin-glass local order of 

this system. 
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For our calculations we use the hard-spin mean-field theory [25-39], a method which 

is nearly as simply implemented as the conventional mean-field theory but which 

conserves frustration by incorporating the effect of the full magnitude of each spin. 

The self-consistent equation for local magnetizations im  in hard-spin mean-field the-

ory is 

{ }

( , ) tanh ( )
j

i j j ij j i

s jj

m P m s J s H t
   

= +  
  

∑ ∑∏ , (2.2) 

where the sum { }ij
s  is over all interacting neighbor configurations and the sum and 

the product over j  are over all sites that are coupled to site i  by interaction ijJ  . The 

single-site probability distribution ( , )j jP m s  is (1 ) 2j jm s+ . The hard-spin mean-

field theory has been used in time-dependent systems, in the study of field-cooled 

and zero-field cooled magnetizations in spin glasses [36]. 

2.1 Equilibrium Phase Diagram  

The equilibrium local magnetizations (0)

im  are determined by simultaneously solving 

N  coupled Eqs.(2.2) for all N  sites i  of the system, at zero external magnetic field, 

0H = . For 0 1p< < , the system is degenerate, and many local magnetization solu-

tions exist and are reached by hard-spin mean-field theory. The phase diagram 

(Fig.2.1) is obtained from temperature 1
T J

−=  and concentration p scans of the equi-

librium spin-glass order parameter (0) 21
ii

Q m
N

= ∑  and magnetization 

(0) 1
ii

M m
N

= ∑ , illustrated in Fig.2.2, obtained by averaging over 20 realizations 

for a 320N =  spin system. The results do not change if a larger system is used. In the 

resulting phase diagram shown in Fig.2.1, the transition temperatures are gauged by 

comparing CT  at 0p = : The precise value [45] is 4.51, the ordinary mean-field value 

is 6, the value obtained here is 5.06 .Thus, the transition temperatures are exagger-

ated as expected from a mean-field theory, but considerably improved over ordinary 

mean-field theory. Our obtained transition concentrations between the ferromagnetic 
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and spin-glass phases are 0.22p = , in excellent agreement with the precise value of 

0.23p =  [46]. 

 

FIG. 2.1: Phase diagram from hard-spin mean-field theory for the 3d =  Ising spin 

glass. All phase boundaries are second order. 

 

FIG. 2.2: (a) Equilibrium spin-glass order parameter 
(0)

Q  as a function of tempera-

ture
1

T J
−= . The curves, from top to bottom, are for p =  0, 0.1, 0.2, 0.3, 0.5. The lat-

ter two curves overlap. (b) Equilibrium magnetization 
(0)M  as a function of concentra-

tion p . The curves, from top to bottom, are for T =  0.5, 1.0, 1.5, 2.0, 2.5, 3.0. 
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FIG. 2.3: Zero-temperature spin-glass order parameter 
(0)Q  as a function of antiferro-

magnetic bond concentration p , obtained by averaging over 10 realizations, with the 

standard deviation being used as the error bar. The dashed line indicates the transition 

between the two phases, whose position is obtained from the phase diagram in Fig. 2.1. 

Fig.2.3 shows the zero-temperature spin-glass order parameter (0)Q  as a function of 

antiferromagnetic bond concentration p . It seen that, as soon as frustration is intro-

duced via the antiferromagnetic bonds, order does not saturate at zero temperature, 

both in the ferromagnetic and spin-glass phases, the latter of course showing more 

unsaturation (Fig.2.4). Moreover, the left column of Fig.2.5 shows the equilibrium 

local magnetizations im  in a cross-section of the system, in the ferromagnetic and 

spin-glass phases. These magnetization cross-sections are remarkably similar to the 

renormalization-group results [47] and are consistent with the chaotic rescaling pic-

ture of the spin-glass phase [48]. 
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FIG. 2.4:Cross-section showing the equilibrium state local magnetizations at zero tem-

perature. The first square shows that the pure ferromagnetic system is saturated; the 

magnitude of all im  is equal to 1. The second corresponds to quenched ferromagnetic 

phase, where there are some im  with 1im < . The last one, corresponding the spin-

glass phase, shows the most unsaturation, as the number of im  with 1im <  is the 

highest. 

2.2 Spin-Glass Hysteresis Loops  

The quenched random magnetic field that is conjugate to the microscopic order is 

(0)( ) ( )i Q iH t H t m= in Eq.(2.1), where the (0)

im  are the equilibrium local magnetiza-

tions obtained with Eq.(2.2) for a given T , p . Hysteresis loops in the spin-glass or-

der (0)1
( ) ( )i ii

Q t m t m
N

= ∑  are obtained in the ordered phases, spin-glass or ferro-

magnetic, by cycling ( )QH t  at constant T , p , via a step of magnitude h  for each 

time unit. Thus, at time 0t = , (0)( 0)Q t Q= = , the equilibrium spin-glass order pa-

rameter. A time unit is N  updating of Eq.(2.2) at randomly selected sites. Thus, h  is 

the sweep rate of the linearly driven [42-44] magnetic field. The resulting hysteresis 

curves are illustrated in Figs.2.6. After one cycling, the subsequent hysteresis loops 

for a given sweep rate coincide, and are shown in Figs.2.6 and used in the scaling 

analysis further below. 
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FIG. 2.5: The top-row figures are from a hysteresis loop in the ferromagnetic phase 

with quenched random antiferromagnetic bonds, 1.5T = , 0.15p = , 0.005h = . The 

middle-row figures are from a hysteresis loop in the spin-glass phase, 1.5T = , 

0.4p = , 0.005h = . Left: calculated equilibrium local magnetizations 
(0)

im  in a cross-

section of the three-dimensional system. A hysteresis loop is started from these sys-

tems. Middle: local magnetizations ( )im t  at the first cancellation point, ( ) 0M t =  (top 

row) and ( ) 0Q t =  (middle row), of the first hysteresis loop. Left: local magnetizations 

at the first reversal point, 
(0)( )M t M= −  and, 

(0)( )Q t Q= −  which occurs when the 

first hysteresis half-loop is completed. The bottom cross-section shows the vanishing 
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equilibrium local magnetizations everywhere in the paramagnetic phase, to be con-

trasted with the spin-glass cross-section immediately above it: the global magnetization 
(0) 0M =  in both cases. 

 

FIG. 2.6: Hysteresis loops for different values of the sweep rate h for (a) the pure fer-

romagnetic phase, 0p = , (b) the ferromagnetic phase with quenched random anti-

ferromagnetic bonds, 0.15p = , (c) the spin-glass phase, 0.4p = , all at 1.5T = . The 

loops are, from outer to inner, for sweep rates h = 0.05, 0.02, 0.01, 0.005. 

2.3 Cycling Effect of a Uniform Magnetic Field on Spin-Glass Order 

As a contrast to the hysteretic effect of the conjugate quenched random magnetic 

field ( )QH t  introduced above, Fig.2.7 shows the effect on the spin-glass phase of 

turning on and then off a uniform magnetic field ( )H t  at a sweep rate h . As ex-

pected, the spin-glass order ( )Q t  starts at a finite value and returns to zero, while the 

uniform magnetization 
1

( ) ( )
ii

M t m t
N

= ∑  starts at zero and returns to a finite value. 



 17

 

FIG. 2.7: Spin-glass order parameter ( )Q t  and uniform magnetization ( )M t  curves 

obtained when, in the spin-glass phase, the uniform magnetic field ( )H t  is turned on 

and then off with sweep rate 0.005h = . In this figure, 0.4p = , 1.5T = . 

2.4 Spin-Glass Hysteresis Area Scaling 

The energy dissipation of a first-order phase transition is obtained from the hysteresis 

area A  of the QQ H−  curve: 
Q

A QdH= ∫� . At fixed T , p , the loop area A  de-

creases with decreasing sweep rate h  and finally reaches a value of 
0A . The area can 

be scaled as 
0 ( ) b

A A f T h= +  [44]. The 
0( )A A−  versus sweep rate h  scaling curves 

are shown in Figs.2.8, for the pure ferromagnetic, quenched random-bond ferromag-

netic, and spin-glass phases for various temperatures, where 0A  is fitted. The result-

ing sweep-rate exponents b  are given in Fig.2.9 and Table2.1. 
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FIG. 2.8: The hysteresis area 0A A−  versus sweep rate h  scaling curves for 

T = 1.0(●), 1.5(▲), 2.0(♦). 

 

FIG. 2.9: The sweep rate exponent b versus concentration p  for T = 1.0, 1.5, 2.0. 

These results are obtained by averaging over 10 realizations, with the standard devia-

tion being used as the error bar. 
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TABLE 2.1: The sweep rate scaling exponents b at different temperatures and concen-

trations in the ferromagnetic and spin-glass phases. 

T p=0 p=0.1 p=0.2 p=0.3 p=0.4 p=0.5 

1.0 0.64 0.49±0.06 0.47±0.04 0.49±0.04 0.51±0.03 0.50±0.02 

1.5 0.64 0.44±0.02 0.48±0.04 0.45±0.03 0.45±0.03 0.47±0.03 

2.0 0.64 0.41±0.03 0.41±0.02 0.38±0.01 0.39±0.02 0.38±0.01 
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3. RESULTS AND DISCUSSION 

From the results given in Fig.2.9 and Table2.1, we deduce that in the pure ferromag-

netic phase, 0p = , the exponent b  is independent of temperature, as found previ-

ously [44]. However, the value of 0.64b =  that we find here, under hard-spin mean-

field dynamics, is distinctly different from that of 2 3b =  found in Ref. [44] under 

ordinary mean-field dynamics, thereby constituting a different dynamic universality 

class. By contrast, in the quenched random-bond ferromagnetic phase and in the 

spin-glass phase, the value of b  is distinctly smaller than that in the pure ferromag-

netic phase, and dependent on temperature. Across both of these two phases, there 

appears to be no dependence of b  on concentration. 

In this research, we only dealt with a linearly swept magnetic field. For further inves-

tigations, the effect of a sinusoidal field can be considered. Moreover, the techniques 

introduced here can be used to explain many different phenomena with spin-glass-

like characteristics. For example, we are considering the problem of absorbance of a 

polymer onto an irregular surface with randomly distributed binding points. Another 

interesting problem to look at would be the neural networks. These are often de-

scribed as spin glass models, and hysteresis phenomena have also been mentioned in 

connection with them [49, 50]. Doing a more extensive research which will combine 

these two aspects of neural networks is also one of our future projects.  
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